Singing light bulb on dimmer switch

Page 1 of 2  
Most light bulbs hum loudly when dimmed via a dimmer switch. A few are ok, because they contain extra filament supports at critical positions.
My hanging (swag) kitchen tiffany-style light takes a G40-150w bulb. It hums badly when dimmed.
(1) Is there a brand of G40-150 bulb that does not hum when dimmed?
(2) Alternatively, is there a small, in-line filter available, or a filtered, table-top dimmer switch, that would create a smoother short-duty-cycle output than the intermittent, alternating square-wave created by a typical dimmer switch? Would that be safe for a household lamp application? Would that eliminate the audible humming?
- David
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
From my experience, some lamp types whine more than others. Typically the longer the filament stanchions are, the more vulnerable to whine the lamp is. I've also had the best success preventing whine with Lutron dimmers

Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload

Thanks, RBM. I agree. I am using a Lutron table-top dimmer for my hanging kitchen globe. The filament still sings when dimmed..
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
David D. wrote:

Do you really need that 150W? If you are going to dim it anyway, why not try a 75W? It should hum less.
--
Joseph Meehan

Dia duit
  Click to see the full signature.
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload

We normally use it at full brightness. We dim it for special moods.
A "G40" is a 5" globe with a standard hosehold lamp screw base. It requires a higher wattage for the filament to brightly light the globe surface (inverse square law from filament to globe surface).
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
David D. wrote:

I don't think there's much you can do in a practical sense to "filter out" the the non-sinusoidal waveform without engineering a special purpose high chopping frequency dimmer, which would prolly waste a lot much power in the form of heat.
BTW, it's not an alternating square wave, it's a sinusoidal waveform which has a portion "removed" from every half cycle when you turn the dimmer down from full brightnes. The lower you set it the less of the original waveform is left, but the parts that are left follow the line voltage waveform.
Before solid state stuff was a twinkle in Shockley's eye they used to make wall mounted variac light dimmers for use in rich folks houses, and I'd bet that they didn't make the light bulbs hum. <G>
Jeff
--
Jeffry Wisnia
(W1BSV + Brass Rat \'57 EE)
  Click to see the full signature.
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
Filament singing is a common problem with phase control dimmers. I design phase control dimmers for theatre and television use. The amount of sing can be reduced by limiting the rise time when the switching device switches on. With triacs and SCRs, this is normally done with a choke in series with the device. Wall mount and other consumer dimmers have relatively small chokes due to the amount of space available and cost considerations. The choke is often a a "stick" of ferrite with wire wrapped around it. We use toroid cores that are considerably larger.
Some professional dimmers are now using IGBTs as the switching device. These can be turned on more slowly, increasing risetime and limiting filament sing. The slow turn-on increases power dissipation in the device, but there are also losses in chokes used in thyristor dimmers, so the total losses may be equivalent. These dimmers often vary the rise time with heat sink temperature, speeding up the rise time as the unit heats up, limiting total temperature rise.
Some IGBT dimmers also do "reverse phase control" where the lamp is dimmed by an "early turn off" instead of a "late turn on." Fall time control is used here to limit singing.
IGBTs are considerably more complex to drive when compared with SCRs and triacs, so IGBT based dimmers are generally more expensive.
There are also some "true sine" dimmers that high frequency chop the incoming AC, then filter out the high frequency. Due to complexity of the high frequency drive of the IGBTs and the requirement for a high power high frequency filter on each channel, these dimmers are also more expensive than phase control.
As Jeff points out, Variac light dimmers (variable autotransformer) output a variable voltage sine wave which keeps lamps from singing. My high school auditorium had a dimmer system based on these. It had really big handles you run up and down to control the lights.
Way way back, theatres used salt water for dimming. Electrodes would be dipped in and out of salt water to bring the lamps up and down. I don't suggest this at home!
Harold WA6FDN http://www.dovesystems.com
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload

suggest this at home!<<<
Sit down for this one. Back in the mid 40's I had a shop class in which we made worm diggers that consisted of two 36"X 1/4" steel rods with wood handles and a 6' length of zip cord with a 110 volt plug on the end. The instructor cautioned us "be sure and stick the rods in the ground before you plug it in". RM~
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
Rob Mills wrote:

sticking up from a board.
--
The e-mail address in our reply-to line is reversed in an attempt to
minimize spam. Our true address is of the form snipped-for-privacy@prodigy.net.
  Click to see the full signature.
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
CJT wrote:

We used two forks swiped from the college dining hall and a lamp cord from somewhere. <G>
They used to sell tabletop hot dog cookers that would do six dogs at a time, stuck onto twelve spear points in the unit. There was a hinged cover, sort of like a waffle iron, which when closed operated a double pole switch connecting those points to the line cord.
Jeff
--
Jeffry Wisnia
(W1BSV + Brass Rat \'57 EE)
  Click to see the full signature.
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
On Mon, 22 May 2006 19:13:32 -0400, Jeff Wisnia

The dogs are heating elements, as well as fuses (excessive current breaks them).

--
Mark Lloyd
http://notstupid.laughingsquid.com
  Click to see the full signature.
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
Harold,
This is the type of technology that I was hoping was available in a fairly small package, for home use.
I was wondering if a simple capacitor filter would smooth the rise and fall slope.
- David

Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
A capacitor "attempts" to maintain a constant voltage (I=C dv/dt), causing a current to keep the voltage the same. An inductor "attempts" to maintain a constant current (V=L di/dt), causing a voltage to keep the current the same. When the thyristor turns on, there's 0A going through the inductor, so the full line voltage ends up across the inductor. The current then ramps up at a rate inversely proportional to the inductance (lamp resistance makes this an RL circuit, so it ends up being an exponential ramp with time constant of L/R, but when the thyristor first fires, the ramp starts out linear). This is exactly what we want. The instantaneous current rise is slowed down to several hundred microseconds of rise time. I can't think of how you'd be able to limit the current slew rate with a capacitor. Sorry!
Harold
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
David D. wrote:

lamp would work (then the lamp would see DC). I bet somebody here knows whether that would wreak havoc with the dimmer.
--
The e-mail address in our reply-to line is reversed in an attempt to
minimize spam. Our true address is of the form snipped-for-privacy@prodigy.net.
  Click to see the full signature.
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload

Since the output of the dimmer is still AC, that would dim it further. by cutting the current in half, unless you used something like a bridge rectifier (4 diodes arranged in a square) that is full wave.
(Sorry, maybe htat is what you mean to begin with.)
Then you'd be running yhour lightbulb on DC, and I would be very intersted in how well that would work.
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
wrote:

It would probably work, but, as a safety precaution, I would not want to try it. With AC, one would usually survive a mometary shock. 110-volt DC can burn severely.
- David
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
Years ago I tried to use a bridge and two 40mF 450V caps to banish some nasty hum coming from two chandeliers, each with five 50W bulbs. Way too much load for the caps. The hum remained and the caps were seconds away from exploding due to their instant heat buildup. It might have worked with a smaller load.
wrote:

Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
wrote:

I don't get it. I thought that if the capacity of a cap was exceeded, it just filled up on one side, and after that the rest of the current behaved as if there were no cap. In fact it occurs to me that in a DC power supply circuit for a radio or tv, the only reason the cap ever gets below full charge is that the load is *high* enough to draw more than is currently, during low parts of the cycle, being provided through the diodes, so it drains the cap.
During the high points, the peaks of the 120 cycles per second power (after rectification) there is more than enough power and that's when the the caps are refilled.
Lowering the load would mean the cap would fill up on one side, and then just stay filled all the time.
Two 40mF sounds like a lot, but if it wasn't enough, it seems to me there would have been no current in or out of the caps after the first charge.
If 80mF was enough to filter, maybe the internal leads couldn't handle the current in and out without getting hot, even though current in and out is what caps do. Maybe that level of heat was within range.
And I would also think that nothing 110 volts could do, even full-rectified to make it higher than 110, could damage a 450V cap.
I would also wonder if caps are necessary, since an incandescent bulb with pulsing DC current would remain hot and giving light, despite the pulsing. Don't electronic dimmers work by completely turning off the current parts of the time? And yet all we see is a constant but dimmer light. They don't use caps at all except maybe little ones to make them oscillate.
Posted and mailed because it's been almost 3 days and ahr is so busy, I'm not sure anyone is reading this thread anymore. So I wanted the poster to know I had replied.

Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
mm wrote:

In this case, the cap is way too small for the 250W load, and it is well drained before the next 'fill up'.

Since the cap is pretty fully drained, there is a very high current at each 'fill up' followed by high current to the load that drains the cap.

In addition to the leads, the capacitor has an internal resistance which you might find specified as ESR (equivalent series resistance). Trying to filter for light bulbs causes a relatively high current charging the caps and then discharging to the lights. That will cause heating when flowing through the capacitor's internal resistance. A reasonably sized (larger) filter cap would have a far smaller ESR. But the dimmer may not like the high peak currents to charge a large cap.

The AC voltage is a sinewave whose value is constantly changing. 110 volts is the RMS value - a form of average. The peak voltage is 1.4 times that - about 155 volts, which the cap would charge to with no load. Far lower than 450V as you said.

Dimmers work by turning on late in each 'hump' in the sine wave. The dimmer stays on until the next zero crossing. At full brightness the dimmer turns on at the start of the 'hump'. At low brightness the dimmer turns on late in the 'hump' and only the end of each 'hump' is there. Rectifying just makes all the 'humps' positive instead of half being positive and half being negative. The same basic waveform, which causes the singing, is still there. Capacitor filtering would change the waveform to DC. Series inductors, which some (all?) dimmers have also changes the waveform, and if there is enough inductance will eliminate singing.
bud--
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
Always thought the singing to be related to the harmonics due from phase control (the sound isn't 60 Hz), so the capacitors might not like seeing all that harmonic current.
Also putting a capacitor parallel to the load shouldn't make it dc. The capacitor had to be rather large, not to mention the need for some rectifiers. This could be a way to filter out the harmonics on the lamp.

Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload

Related Threads

HomeOwnersHub.com is a website for homeowners and building and maintenance pros. It is not affiliated with any of the manufacturers or service providers discussed here. All logos and trade names are the property of their respective owners.