New house - Should I consider gas heat?

I am building a new home in SE Virginia. I am wondering if I should consider gas heat. What are the pros & cons.
Thanks.
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
On Fri, 06 May 2005 01:22:41 -0400, snipped-for-privacy@aol.com wrote:

I don't know about your comparative fuel costs. But I will go for gas. Its clean burning, does not require an oil tank and the tanker pulling up to deliver fuel oil. I've never seen a oil furnace but from posts in this NG it appears to be high maintenance, pumps, nozzles and what else?
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
snipped-for-privacy@aol.com wrote:

...a good climate for solar heating with a sunspace. NREL says 1080 Btu/ft^2 of sun falls on a Norfolk south wall on an average 39.1 F January day with a 47.3 daily max, so the average daytime temp is about 43. A single layer of polycarbonate plastic sunspace glazing would gain 0.9x1080 = 972 Btu/ft^2 and lose about 6h(80-43)1ft^2/R1 = 222, for a 750 Btu/ft^2 per day net gain.
Nick
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
wrote:

So do you recommend gas or oil along with the solar?
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload

January is the worst-case month for solar house heating in Norfolk, with the least "sun per degree day," ie 1080/(70-39.1) = 35.0 Btu/F in January vs 1040/(70-43.8) = 39.7 in December. "Worst-case design" is common in aerospace engineering, but rarely used for solar houses. If it were, more would be close to 100% solar-heated. It isn't hard. If cloudy days are coin-flips and a house can store enough solar heat for 1 cloudy day, it can be at most 50% solar-heated... 2 days make 75% max, 3, 88%, 4, 94%, and 5, 97%, but few store heat for more than 1 cloudy day.
First make sure the house can keep itself warm on an average day in the worst-case month: a 48'x46'x8' tall house with 200 ft^2 of R4 windows and R16 SIP walls and ceiling and 0.2 ACH of air leaks would have 200ft^2/R4 = 50 Btu/h-F of window thermal conductance + 1336ft^2/R16 = 84 for walls + 2304/16 = 144 for the ceiling + about 0.2x2304x8/60 = 61 for air leakage, totaling 339 Btu/h-F. On an average January day in Norfolk, it would need 24h(65-39.1)339 = 210.7K Btu of heat.
A frugal 600 kWh/mo of indoor electrical use could provide 68.2K Btu/day. NREL says 470, 480, and 210 Btu/ft^2 fall on east, west, and north walls, and 710 falls on the ground, so 100 ft^2 of south windows and 50 on the east and west walls and 25 on the north with 50% solar transmission would gain 0.5x25(4x1080+2x470+480+210) = 74,275 Btu/day, leaving 210.7K-74,275 = 68.2K. That might come from 68.2K/750 = 91 ft^2 of south sunspace glazing.
With no sun, the house needs 210.7K-68.2K = 142.5K Btu on a 39.1 F day, or 712.5K for 5 cloudy days. At 70 F, with no electrical use, it needs (70-39.1)339 = 10.5K Btu/h, eg 2304 ft^2 of R1 radiant floor with water at 70+10.5K/2304 = 74.5 F from a 4'x8'x4' 7978 lb EPDM-lined plywood box that cools from 74.5+712.5K/7978 = 164 F to 74.5 F over 5 cloudy days.
As an alternative to a radiant floor and tank, hot water might live in poly film ducts on plywood shelves under the ceiling, with foil under the shelves to avoid overheating the rooms by radiation and slow ceiling fans and room temp thermostats to move warm air down as needed on cloudy days.
If 10.5K Btu/h flows from temp T water through 24'x48' of R0.27 shelf surface into 70 F air with a 10.5K/(24x48/0.27) = 2.4 F temp drop, the min usable water temp is 72.4 F. If it's initially 110 F, the ducts need 712.5K/(110-72.4) = 18.9K lb, ie 12x18.9K/(24x48x62.33) = 3.2 inches of water (with 800' ($80) of 1/2" PE pipe inside to preheat pressurized water for showers and a simple greywater-house air heat exchanger.) We already figured the ceiling would lose 24h(65-39.1)2304/16 = 89.5K Btu on a cloudy day. Over (110+72.4)/2 = 91.2 water for 5 cloudy days, it would lose 89.5K/day if 24h(91.2-39.1)2304/R = 89.5K, with an R = 32 ceiling SIP.
On an average day, it would lose about 24h(110-39.1)2304/32 = 122.5K Btu, 33K more than we figured before. A solar attic might collect 68.2K Btu more than that, ie 101.2K Btu/day in 110 F water, to avoid the need for a sunspace. The attic ridge might be 4' above the ceiling, with 8' of clear corrugated polycarbonate Dyanglas roofing that slopes down to the south wall at ceiling level and a 4'x24' draindown pond solar collector on the 6.92'x48' R32 floor. The north part of the attic could be a cathedral ceiling with exposed rafters to form a truss that supports duct shelves. A few clerestory windows in the 4'x48' reflective back wall of the attic would add light and architectural drama.
On an average Jan day, the pond (a 4'x24' layer of poly film over 2" of water over a 4'x24' piece of EPDM rubber) would collect approximately 0.9x24(4x710+0.9x2.27x1080) = 109K Btu of direct and reflected sun and lose about 6h(110-T)4'x24'x1.5 = 864(110-T) Btu to T (F) attic air. The non-pond attic would gain about 0.9x(236x710+234x1080) = 378.3K Btu plus 864(T-110) from the pond and lose about 6h(T-43)8x48/R1 = 2304(T-43), which makes 378.3K + 864(110-T) = 2304(T-43), so T = 181 F, or less, with some white attic floor and more radiation loss.

An interesting question. Most "solar" houses are only 30-60% solar-heated, so the backup fuel cost is important. PE Norman Saunders estimates how often his near-100% solar heated houses in cold, cloudy New England will need "purchased energy" like other engineers estimate 100-year floods. ("Your house will need backup heat for 3 hours every 35 years.") And his predictions come true. He's been designing solar houses since 1946, and some have long track records with digital data loggers.
He suggests buying a 5 kW electric space heater for backup, figuring it's inexpensive if rarely used, but some of his clients have never done that. They prefer to wear sweaters indoors every 35 years :-)
Nick
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload

Over the years the cost of energy has changed so gas may no longer have the advantage in cost, but it is still less maintenance, cleaner burning, always available. Gas cooking, IMO, is superior also for the faster heat control. A gas range will still work if the power goes out because you can light the burners with a match.
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
Edwin Pawlowski wrote:

You can light the burners with a match? I thought you couldn't do that anymore?
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload

You cannot light the oven as it has a igniter that glows while it is on, but AFAIK, you can still light the top burners. You can on all the ones I'm aware of, but there could be exceptions.
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
herein ky, nat gas used to be 1/3 the cost of elec to eat. now a heat pump is 1/3 the cost to heat than gas, and who knows if another enron situation will shoot up nat gas prices. your in a mild winter location i think so heat pump should work fine, i got heat pump with a coil that goes into the ground and it only cost me 40.00 a month to heat my house here in ky.lucas
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
One thing I found out is that when we had an ice storm and lost power for a few days in the winter. If you have a generator, the power to run the blower is a lot less and the gas furnace can keep your house warm while the generator requirements of an electric furnace may be pretty high. FYI
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
My question was poorly asked - sorry.
I will need to choose between LP gas and an elec. heat pump. Oil is out of the question because of environmental issues on this particular site.
If an elec heat pump then there will be a choice between a conventional or ground source heat pump.
If a ground source, there would be a choice between open and closed loop systems.
If open loop, the water source would be from a 400 foot well with water in the well casing rising to about 180' below ground surface. I mention this because of energy considerations. (Energy to pump the water). If I went this route I am not sure what the implications of disposing of the water might be, or system unreliability to clogging of some sort from the water. There is a small river which empties into the Chesapeake Bay and I expect that I would not be allowed to discharge water into it.
The setting is wooded, but due to clearing for the house it may get quite a bit of sun during its early years.
Thanks for any help.
On Fri, 06 May 2005 01:22:41 -0400, snipped-for-privacy@aol.com wrote:

Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload
On Fri, 06 May 2005 09:28:13 -0400, snipped-for-privacy@aol.com wrote:

I would choose a heat pump in your location over LP gas anytime. You could also do a heat pump with lp aux. heat for the cold days if your going to have gas for cooking and hot water anyway.
I'm not knowlegable enough on the ground source systems to really comment on them. The only thing I can add on them is that they can be quite a bit more expensive to install and I wonder what the payback would be in your area. Steve B.
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
<%-name%>
Add image file
Upload

Related Threads

    HomeOwnersHub.com is a website for homeowners and building and maintenance pros. It is not affiliated with any of the manufacturers or service providers discussed here. All logos and trade names are the property of their respective owners.